Abstract:As high-quality public text approaches exhaustion, a phenomenon known as the Data Wall, pre-training is shifting from more tokens to better tokens. However, existing methods either rely on heuristic static filters that ignore training dynamics, or use dynamic yet optimizer-agnostic criteria based on raw gradients. We propose OPUS (Optimizer-induced Projected Utility Selection), a dynamic data selection framework that defines utility in the optimizer-induced update space. OPUS scores candidates by projecting their effective updates, shaped by modern optimizers, onto a target direction derived from a stable, in-distribution proxy. To ensure scalability, we employ Ghost technique with CountSketch for computational efficiency, and Boltzmann sampling for data diversity, incurring only 4.7\% additional compute overhead. OPUS achieves remarkable results across diverse corpora, quality tiers, optimizers, and model scales. In pre-training of GPT-2 Large/XL on FineWeb and FineWeb-Edu with 30B tokens, OPUS outperforms industrial-level baselines and even full 200B-token training. Moreover, when combined with industrial-level static filters, OPUS further improves pre-training efficiency, even with lower-quality data. Furthermore, in continued pre-training of Qwen3-8B-Base on SciencePedia, OPUS achieves superior performance using only 0.5B tokens compared to full training with 3B tokens, demonstrating significant data efficiency gains in specialized domains.
Abstract:Large language models have made substantial progress in mathematical reasoning. However, benchmark development for multilingual evaluation has lagged behind English in both difficulty and recency. Recently, GSM-Symbolic showed a strong evidence of high variance when models are evaluated on different instantiations of the same question; however, the evaluation was conducted only in English. In this paper, we introduce MGSM-Pro, an extension of MGSM dataset with GSM-Symbolic approach. Our dataset provides five instantiations per MGSM question by varying names, digits and irrelevant context. Evaluations across nine languages reveal that many low-resource languages suffer large performance drops when tested on digit instantiations different from those in the original test set. We further find that some proprietary models, notably Gemini 2.5 Flash and GPT-4.1, are less robust to digit instantiation, whereas Claude 4.0 Sonnet is more robust. Among open models, GPT-OSS 120B and DeepSeek V3 show stronger robustness. Based on these findings, we recommend evaluating each problem using at least five digit-varying instantiations to obtain a more robust and realistic assessment of math reasoning.
Abstract:Tonal low-resource languages are widely spoken yet remain underserved by modern speech technology. A key challenge is learning representations that are robust to nuisance variation such as gender while remaining tone-aware for different lexical meanings. To address this, we propose SITA, a lightweight adaptation recipe that enforces Speaker-Invariance and Tone-Awareness for pretrained wav2vec-style encoders. SITA uses staged multi-objective training: (i) a cross-gender contrastive objective encourages lexical consistency across speakers, while a tone-repulsive loss prevents tone collapse by explicitly separating same-word different-tone realizations; and (ii) an auxiliary Connectionist Temporal Classification (CTC)-based ASR objective with distillation stabilizes recognition-relevant structure. We evaluate primarily on Hmong, a highly tonal and severely under-resourced language where off-the-shelf multilingual encoders fail to represent tone effectively. On a curated Hmong word corpus, SITA improves cross-gender lexical retrieval accuracy, while maintaining usable ASR accuracy relative to an ASR-adapted XLS-R teacher. We further observe similar gains when transferring the same recipe to Mandarin, suggesting SITA is a general, plug-in approach for adapting multilingual speech encoders to tonal languages.
Abstract:Large language models (LLMs) are increasingly multilingual, yet open models continue to underperform relative to proprietary systems, with the gap most pronounced for African languages. Continued pre-training (CPT) offers a practical route to language adaptation, but improvements on demanding capabilities such as mathematical reasoning often remain limited. This limitation is driven in part by the uneven domain coverage and missing task-relevant knowledge that characterize many low-resource language corpora. We present \texttt{AfriqueLLM}, a suite of open LLMs adapted to 20 African languages through CPT on 26B tokens. We perform a comprehensive empirical study across five base models spanning sizes and architectures, including Llama 3.1, Gemma 3, and Qwen 3, and systematically analyze how CPT data composition shapes downstream performance. In particular, we vary mixtures that include math, code, and synthetic translated data, and evaluate the resulting models on a range of multilingual benchmarks. Our results identify data composition as the primary driver of CPT gains. Adding math, code, and synthetic translated data yields consistent improvements, including on reasoning-oriented evaluations. Within a fixed architecture, larger models typically improve performance, but architectural choices dominate scale when comparing across model families. Moreover, strong multilingual performance in the base model does not reliably predict post-CPT outcomes; robust architectures coupled with task-aligned data provide a more dependable recipe. Finally, our best models improve long-context performance, including document-level translation. Models have been released on [Huggingface](https://huggingface.co/collections/McGill-NLP/afriquellm).
Abstract:Large Language Models (LLMs) have shown promising capabilities for solving Operations Research (OR) problems. While reinforcement learning serves as a powerful paradigm for LLM training on OR problems, existing works generally face two key limitations. First, outcome reward suffers from the credit assignment problem, where correct final answers can reinforce flawed reasoning. Second, conventional discriminative process supervision is myopic, failing to evaluate the interdependent steps of OR modeling holistically. To this end, we introduce StepORLM, a novel self-evolving framework with generative process supervision. At its core, StepORLM features a co-evolutionary loop where a policy model and a generative process reward model (GenPRM) iteratively improve on each other. This loop is driven by a dual-feedback mechanism: definitive, outcome-based verification from an external solver, and nuanced, holistic process evaluation from the GenPRM. The combined signal is used to align the policy via Weighted Direct Preference Optimization (W-DPO) and simultaneously refine the GenPRM. Our resulting 8B-parameter StepORLM establishes a new state-of-the-art across six benchmarks, significantly outperforming vastly larger generalist models, agentic methods, and specialized baselines. Moreover, the co-evolved GenPRM is able to act as a powerful and universally applicable process verifier, substantially boosting the inference scaling performance of both our own model and other existing LLMs.



Abstract:We formalize sequential decision-making with information acquisition as the probing-augmented user-centric selection (PUCS) framework, where a learner first probes a subset of arms to obtain side information on resources and rewards, and then assigns $K$ plays to $M$ arms. PUCS covers applications such as ridesharing, wireless scheduling, and content recommendation, in which both resources and payoffs are initially unknown and probing is costly. For the offline setting with known distributions, we present a greedy probing algorithm with a constant-factor approximation guarantee $\zeta = (e-1)/(2e-1)$. For the online setting with unknown distributions, we introduce OLPA, a stochastic combinatorial bandit algorithm that achieves a regret bound $\mathcal{O}(\sqrt{T} + \ln^{2} T)$. We also prove a lower bound $\Omega(\sqrt{T})$, showing that the upper bound is tight up to logarithmic factors. Experiments on real-world data demonstrate the effectiveness of our solutions.

Abstract:We propose a multi-agent multi-armed bandit (MA-MAB) framework aimed at ensuring fair outcomes across agents while maximizing overall system performance. A key challenge in this setting is decision-making under limited information about arm rewards. To address this, we introduce a novel probing framework that strategically gathers information about selected arms before allocation. In the offline setting, where reward distributions are known, we leverage submodular properties to design a greedy probing algorithm with a provable performance bound. For the more complex online setting, we develop an algorithm that achieves sublinear regret while maintaining fairness. Extensive experiments on synthetic and real-world datasets show that our approach outperforms baseline methods, achieving better fairness and efficiency.
Abstract:Large-scale training corpora have significantly improved the performance of ASR models. Unfortunately, due to the relative scarcity of data, Chinese accents and dialects remain a challenge for most ASR models. Recent advancements in self-supervised learning have shown that self-supervised pre- training, combined with large language models (LLM), can effectively enhance ASR performance in low-resource scenarios. We aim to investigate the effectiveness of this paradigm for Chinese dialects. Specifically, we pre-train a Data2vec2 model on 300,000 hours of unlabeled dialect and accented speech data and do alignment training on a supervised dataset of 40,000 hours. Then, we systematically examine the impact of various projectors and LLMs on Mandarin, dialect, and accented speech recognition performance under this paradigm. Our method achieved SOTA results on multiple dialect datasets, including Kespeech. We will open-source our work to promote reproducible research
Abstract:Nowadays, formal theorem provers have made monumental progress on high-school and competition-level mathematics, but few of them generalize to more advanced mathematics. In this paper, we present REAL-Prover, a new open-source stepwise theorem prover for Lean 4 to push this boundary. This prover, based on our fine-tuned large language model (REAL-Prover-v1) and integrated with a retrieval system (Leansearch-PS), notably boosts performance on solving college-level mathematics problems. To train REAL-Prover-v1, we developed HERALD-AF, a data extraction pipeline that converts natural language math problems into formal statements, and a new open-source Lean 4 interactive environment (Jixia-interactive) to facilitate synthesis data collection. In our experiments, our prover using only supervised fine-tune achieves competitive results with a 23.7% success rate (Pass@64) on the ProofNet dataset-comparable to state-of-the-art (SOTA) models. To further evaluate our approach, we introduce FATE-M, a new benchmark focused on algebraic problems, where our prover achieves a SOTA success rate of 56.7% (Pass@64).
Abstract:In this paper, we tackle the critical challenge of compressing large language models (LLMs) to facilitate their practical deployment and broader adoption. We introduce a novel post-training compression paradigm that focuses on low-rank decomposition of LLM weights. Our analysis identifies two main challenges in this task: the variability in LLM activation distributions and handling unseen activations from different datasets and models. To address these challenges, we propose a nested activation-aware framework (NSVD) for LLMs, a training-free approach designed to enhance the accuracy of low-rank decompositions by managing activation outliers through transforming the weight matrix based on activation distribution and the original weight matrix. This method allows for the absorption of outliers into the transformed weight matrix, improving decomposition accuracy. Our comprehensive evaluation across eight datasets and six models from three distinct LLM families demonstrates the superiority of NSVD over current state-of-the-art methods, especially at medium to large compression ratios or in multilingual and multitask settings.